Romanian CubeSat Project

University of Bucharest

University Politehnica of Bucharest

Supervisor: Romanian Space Agency (ROSA)

- Mission concept
- Detailed Satellite description
- Ground Station
- Summary & Follow-up

- Three original scientific payloads:
 - Meteorite detection
 - Remote sensing camera
 - Radiation dose measurement
- Customized components
 - EPS, Attitude stabilization, communications
 - Ground stations development

Satellite description

- BUS
 - Electronic Power Supply
 - Attitude Determination & Control
 - Radio COMM
 - On board computer
- Payload
 - CICLOP Earth observation Camera
 - Dose-N experiment for measuring the total radiation dose
 - SAMIS micrometeorites detection platform

On board computer

Two OBC boards

- MSP430 Flight Module CubeSat kit (Rev C)
 - Antenna deployment
 - MHX-2400 communications
 - Image acquisition
- A second MSP430 handles:
 - ADC for the experiments & data storage
 - Attitude Determination and Control system
 - The beacon

Power supply

- Triple junction solar cells.
- 2 pairs per panel sides,
- 1 pair- top, bottom and front
- Output 2 V/cell => 3.4 V/pair (considering 0.6 V Diode)
- 23.5 % Efficiency
- 41 x 42.4 mm cell area
- 70 % coverage
- 1.8 2.1 W expected power

GOLIAT @ CubeSat Developers' Workshop

Batteries

Two 7.4 V battery packs resulting from two 3.7 V Li-Ion

- Capacity : Typical: 860mAh (at 20 C)
- Nominal Voltage : 3.7 V
- Weight : Approx. 21 g
- Dimensions:
 - Width = max. 34.0 mm Height = max. 50.4 mm Thickness (shipment) = 5.5 mm
- Standard Discharge : 172 to 860 mA to 2.8V
 Max discharge current 1800 mA

Attitude determination

- 3-axis magnetometer Honeywell HMR 3400 dimensions 15.24 x 38.1 x 7 mm weight 3.75 g Measurement Spectrum -2 to 2 Gauss Sampling 8 Hz
- GPS receiver TRIMBLE dimensions 19 x 19 x 2.54 weight 1.7 g 12 channels hot start 9 s warm start 35 s Cold start 39 s

Attitude determination Software

1

- GPS back-up algorithm
 - TLE decoding at the satellite
 - Position data is cross-referenced with the magnetometer for complete attitude determination

TEST				
1 278420	03031C 07	017.98525332	.00000255 00000-0 -97918-	4 0 9332
2 27842	98.7172 29.2	099 0009762 1	43.1388 217.0395 14.208568	70184205
Satellite Number		Classification		Inclination
27842		U		98.7172
Year of launch	Launch	number	Launch piece	Ascending Node
03	0	31		29.2099
Year	Month	Day	Time	Eccentricity
07	1	17	23:38:45	0.0009762
				Perigee
				143.1388
				Mean Anomaly
				217.0395
				Mean Motion
				14.20856870
				Revolution number
				18420

Attitude control

- Two axes momentum wheels system
- Each micro-motor is fixed in the structure's hole, from the center of a face
- The momentum wheels are spinning in the inner space of the CubeSat
- The servo amplifiers controls the torque and the speed between the limits
- M (0 0.12 mNm)
- n (0 20000 s^-1)
- Estimated 360^o rotation 40 s

GOLIAT @ CubeSat Developers' Workshop

Functions:

- Satellite early tracking using the beacon
- Download Data and Telemetry from the Satellite
- Upload commands for reprogramming the flight computer

Two independent transceivers architecture commanded by two different processors for redundancy

Beacon

- Ham Frequency 437.485 MHz (IARU coordinated)
- 1200 bps AFSK packets
- Repeated transmissions (<60 s) including:</p>
 - Identification of the satellite
 - Telemetry data and diagnosis of the subsystems
- 100mW 300 mW output power
- Only transmit mode used initially
- Can act as a back-up for the main data link (Rx mode operations)

- 2.4 GHz transceiver
- Downlink for experimental data & detailed housekeeping

- Uplink for new commands
- Operates only when enters the range of the ground station
- Up to 1W output power
- Programmable bit rate (9600 bps average)

CICLOP - Earth Observation Camera

Camera Design

System consists of three distinctive components:

Camera sensor board

- up to 3MP high resolution color sensor in 4/3 image format
- Camera Processor Board
 - a powerful 600 MHz core, 64 MRAM digital signal processor capable of real time JPEG compression
- Custom lens mount system
 - in house, custom made system
 - 6 degree viewing angle

- Focal distance 57 mm
- Solid Angle 6°
- Expected picture area 50 x 70 Km
- Pixel area 21 x 28 m
- Up to 3 Mp image

SAMIS

- A study on the micrometeorites in Low Earth Orbit
- Impact sensor: a highly sensible 50 x 37 mm piezofilm
- Micrometeorite collision generates an electrical impulse proportional with the energy of the impact
- The signal is conditioned using a charge amplifier and than read at the ADC

• The purpose of experiment:

- The measurement of the total dose of cosmic radiation.
- A semiconductor sensor (PIN diode) and a scintillating material are used as a detector
- Measurements are made at regular time intervals
 Expected results:
- The total dose as a function of coordinates on LEO (latitude, longitude, altitude)

GOLIAT @ CubeSat Developers' Workshop

Ground Stations

- BUCHAREST
 - UHF equipment is operational since February 2007
 - Multiple CubeSats contacts (April '07 Dnepr and May '08)
 - Equipment
 - Yaesu G5500 Azimuth& Elevation Rotators with GS-232B interface
 - Icom IC-910H dual band radio transceiver
 - Kamtronics Kam-XL modem
 - Directional Yagi antennas 14 dB
 - PC tracking, radio control and data storage
 - New equipment for 2.4 GHz operations
- Cluj-Napoca radio station
 - 4 m dish
 - Tracking rotators (azimuth and elevation)
 - MHX-2400 module
 - Amplifier

Summary & Follow Up

Our satellite:

- Built for redundancy (2 transceivers, 2 OBCs)
- Complex systems with simple back-ups
- 3 science experiments (most complex camera on a CubeSat)
- Validation of several CubeSat components (momentum wheels, EPS)

Follow up

- A second satellite
- Formation flying (swarms of CubeSats)

..... Waiting for Vega

• Expected results! ©

Cluj-Napoca

• Bucharest

GOLIAT @ CubeSat Developers'

09 - 10 Aug 2008